The dif/Xer Recombination Systems in Proteobacteria

نویسندگان

  • Christophe Carnoy
  • Claude-Alain Roten
چکیده

In E. coli, 10 to 15% of growing bacteria produce dimeric chromosomes during DNA replication. These dimers are resolved by XerC and XerD, two tyrosine recombinases that target the 28-nucleotide motif (dif) associated with the chromosome's replication terminus. In streptococci and lactococci, an alternative system is composed of a unique, Xer-like recombinase (XerS) genetically linked to a dif-like motif (dif(SL)) located at the replication terminus. Preliminary observations have suggested that the dif/Xer system is commonly found in bacteria with circular chromosomes but that assumption has not been confirmed in an exhaustive analysis. The aim of the present study was to extensively characterize the dif/Xer system in the proteobacteria, since this taxon accounts for the majority of genomes sequenced to date. To that end, we analyzed 234 chromosomes from 156 proteobacterial species and showed that most species (87.8%) harbor XerC and XerD-like recombinases and a dif-related sequence which (i) is located in non-coding sequences, (ii) is close to the replication terminus (as defined by the cumulative GC skew) (iii) has a palindromic structure, (iv) is encoded by a low G+C content and (v) contains a highly conserved XerD binding site. However, not all proteobacteria display this dif/XerCD system. Indeed, a sub-group of pathogenic epsilon-proteobacteria (including Helicobacter sp and Campylobacter sp) harbors a different recombination system, composed of a single recombinase (XerH) which is phylogenetically distinct from the other Xer recombinases and a motif (dif(H)) sharing homologies with dif(SL). Furthermore, no homologs to dif or Xer recombinases could be detected in small endosymbiont genomes or in certain bacteria with larger chromosomes like the Legionellales. This raises the question of the presence of other chromosomal deconcatenation systems in these species. Our study highlights the complexity of dif/Xer recombinase systems in proteobacteria and paves the way for systematic detection of these components in prokaryotes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xer Site Specific Recombination: Double and Single Recombinase Systems

The separation and segregation of newly replicated bacterial chromosomes can be constrained by the formation of circular chromosome dimers caused by crossing over during homologous recombination events. In Escherichia coli and most bacteria, dimers are resolved to monomers by site-specific recombination, a process performed by two Chromosomally Encoded tyrosine Recombinases (XerC and XerD). Xer...

متن کامل

Are two better than one? Analysis of an FtsK/Xer recombination system that uses a single recombinase

Bacteria harbouring circular chromosomes have a Xer site-specific recombination system that resolves chromosome dimers at division. In Escherichia coli, the activity of the XerCD/dif system is controlled and coupled with cell division by the FtsK DNA translocase. Most Xer systems, as XerCD/dif, include two different recombinases. However, some, as the Lactococcus lactis XerS/dif(SL) system, inc...

متن کامل

FtsK-dependent and -independent pathways of Xer site-specific recombination.

Homologous recombination between circular chromosomes generates dimers that cannot be segregated at cell division. Escherichia coli Xer site-specific recombination converts chromosomal and plasmid dimers to monomers. Two recombinases, XerC and XerD, act at the E. coli chromosomal recombination site, dif, and at related sites in plasmids. We demonstrate that Xer recombination at plasmid dif site...

متن کامل

The Unconventional Xer Recombination Machinery of Streptococci/Lactococci

Homologous recombination between circular sister chromosomes during DNA replication in bacteria can generate chromosome dimers that must be resolved into monomers prior to cell division. In Escherichia coli, dimer resolution is achieved by site-specific recombination, Xer recombination, involving two paralogous tyrosine recombinases, XerC and XerD, and a 28-bp recombination site (dif) located a...

متن کامل

Global Analysis of a Key Developmental Pathway in Plants

Homologous recombination between circular sister chromosomes during DNA replication in bacteria can generate chromosome dimers that must be resolved into monomers prior to cell division. In Escherichia coli, dimer resolution is achieved by site-specific recombination, Xer recombination, involving two paralogous tyrosine recombinases, XerC and XerD, and a 28-bp recombination site (dif) located a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009